
__host__ __device__ - Generic programming in Cuda

THOMAS MEJSTRIK

Writing templated functions in Cuda/C++ both for the CPU and the GPU bears the problem that in general

always both __host__ and __device__ functions are instantiated. This easily leads to silently broken code,

either on the host or device side. This paper presents patterns to solve this problem. XX needs work

ACM Reference Format:

Thomas Mejstrik. 2024. __host__ __device__ - Generic programming in Cuda. 1, 1 (April 2024), 22 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

XX check code examples whether they compile before submitting finally

1.1 Introduction

When writing template functions in Cuda/C++ which shall work for both the device side (GPU), as

well the host side (CPU), one easily faces the following problem: Some generic code only works on

one of the two sides. Yet, the Cuda language has no means of specifying for which side something

shall be instantiated. This leads in the best case to compiler errors, or worse pages of compiler

warnings (which then hide the important warnings), or a program which compiles but crashes on

execution run, or in the worst case a program which runs and malfunctions.

This paper describes patterns to solve the problem for templated functions and member functions.
We shortly discuss lambdas, but since Cuda has no good support for templated lambdas yet, they

are of not much use to solve our problem. We do not discuss how constants can be used both in

host and device code efficiently, since this is totally different topic. XX Motivation is currently

an abstract, and does not motivate much.

Our motivating example is presented in Listing 1. There, a function is templatized for some user

defined type T (e.g. a matrix class). In main, the function func is called with the type H. Although,

the call originates from the host side, according to the Cuda specification both the __host__ and

the __device__ version of wrap must be instantiated with the type H. H’s function func is only a

__host__ function. Thus the compiler notices that there is a possible stray function call, and emits

a warning. nvcc 12 for example tells us: “calling a __host__ function ("H::func()") from a __host__

__device__ function ("wrap< ::H> ") is not allowed”.

Note though that the program is well-formed and does what is expected — it returns 3. Things

are different, when we would instead call func< D >() (the line marked with //UB). In that case we

would have really a stray function call. Unfortunately, nvcc still compiles this example (strangely

even without a warning!
1
but at runtime the result is undefined.

2

In view of the problems described so far we would like to have

• a compilation error whenever there is a stray function call

• no compilation warnings due to wrongly instantiated function templates.

1
A bug report was sent to Nvidia concerning this example, see Bug No. 4196685. So hopefully, nvcc will warn in such

cases too in future.

2
On the test system the program returned 1, instead of 2.

Author’s address: Thomas Mejstrik.

© 2024 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in , https://doi.org/10.1145/nnnnnnn.nnnnnnn.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Thomas Mejstrik

Listing 1: Problem T

struct H {

__host__ int func() { return 3; }

};

struct D {

__device__ int func() { return 2; }

};

template < typename T >

__host__ __device__

int wrap() {

return T{}. func ();

}

int main() {

// return D{}. func (); // compilation error

// return wrap < D >(); // no warning , UB

return wrap < H >(); // warning

}

Readers not familiar with some intricacies of C++ or Cuda, are referred to Appendix B.

1.2 Motivation

The usecase described here, is often not on the radar of Cuda developers. Indeed, graphic cards and

CPUs differ heavily in some regards. We list only some of those: CPUs only have a handful of cores

nowadays whereas GPUs have thousands of them, CPUs are designed for low latency, GPUs are

designed for high throughput. CPUs can handle branching quite well in contrast to GPUs, GPUs

often work fastest when numbers with reduced accuracy (single / half float) are used, the memory

bandwidth of graphic cards is often much much higher than that of the RAM on the host side, etc..

Thus, the problems which can efficiently be solved on a GPU differ, and thus code is often not

designed to be portable between CPUs and GPUs, although it may make sense.

Yet, there are cases where it makes sense to write code which can work on both sides. One is for

so-called Embarrassingly parallel problems. These are problems where little or no effort is needed

to port a single threaded program to a multi threaded program. Such programs often are not fully

suited for GPUs (e.g. they contain branches), but neither are suited for a CPU (because they lack

cores). Another case is for problems which require a high memory bandwidth. XX Search for

Youtube talk

Then there is the aspect of the available hardware of the customers. A user, which could be

a developer or a customer, may not always have a compatible GPU at hand. For example for a

presentation, or when the developer wants to work on the road on an old laptop.

Then there is also the aspect of developer experience. Debugging for example is much easier on

the CPU than on a GPU. XX Work on that part

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 3

1.3 Notation and Targeted Systems

We will refer to code in __host__ functions as host code, and to code in __device__ and __global__

functions as device code. We will not discuss __global__ functions, as for the considerations of this

paper, they behave the same as __device__ functions.

We try to only use standard Cuda terminology in the paper, except for the following: We say a

function call is a stray call if it originates (𝑎) from a __host__ (or __host__ __device__) function and

calls a __device__ function, or originates (𝑏) from a __device__ (or __host__ __device__) function

and calls a __host__ function.

Condensed code examples. In order to save space in the listings, we use a style not recommended

for production code. In particular we use (very) short identifiers, omit the inclusion of headers

(e.g. <cassert>) or headers of functions described in this paper (e.g. "release_assert.h"). Types

which work on the host side are usually named ‘H‘, types for the device side with ‘D‘.

Targeted systems. We target the C++ versions 14, 17, and 20, as well as nvcc versions above and
including 9.2

3

We target multiple C++ versions because often (Cuda) developers do not have access to the latest

C++ version, the Cuda standard lacks behind the C++ standard usually for years and/or (Cuda)

compilers may have bugs.

2 THE PATTERNS

We presents eight patterns, which we deeom to be a good way to tackle the above stated, or similar,

problems. Patterns and solutions which we deem to be not good are only discussed very shortly.

There are different reasons why a solution can be deemed not to be good. Most of the times, this

will be to a poor support of the C++ standard from Cuda compilers, or shortcomings in the Cuda

language itself. These points would make some solutions unnecessary long, complicated, hard to

maintain and thus bug prone. XX Paragraph is clumsy

2.1 Pattern: Host device everything

2.1.1 Context. You have some code without any Cuda specific language constructs. The code shall

be useable both with Cuda and non-Cuda compilers, and both on the host and device side. The

code (its implementation) makes sense on both on the host and device side.

2.1.2 Problem. The code does not compile under nvcc or the host compiler, or the code is not

usable on the host or device side yet.

2.1.3 Solution. We make all functions to __host__ __device__ functions when compiled with a

Cuda compiler. When compiled with a host compiler, the functions shall have no annotations (and

thus be __host__ functions).

2.1.4 Example implementation. We annotate all of our functions with user defined preprocessor

macros, which expand to __host__ __device__ when compiled with nvcc, and which expand to

nothing when compiled with a non-Cuda compiler, see Listing 3.
4

2.1.5 Pitfalls to Avoid.

3
All examples are thoroughly tested with gcc 11.3, clang 14.0 and nvcc 12.1. For older compiler versions godbolt [28] was
used. We did not try to compile the Cuda code with clang alone, since there are notable differences between the Cuda dialect

clang uses. [1]

4
It is allowed by the standard to omit the return statement in the main function.

, Vol. 1, No. 1, Article . Publication date: April 2024.

4 Thomas Mejstrik

Listing 2: Easy, but UB, __host__ __device__ macros

// cudatags_ub.h

#ifndef CUDATAGS_B

#define CUDATAGS_B

#ifndef __CUDACC__

#define __host__

#define __device__

#endif

#endif

// Example: function definition

__host__ __device__ void func1() {}

Implementation differences between host and device code. In most cases, non-templated functions

can directly ported to Cuda just by adding the __device__ keyword to its declaration. Yet, this may

not be the optimal approach, since the GPU and CPU may need different implementation, in order

to have a “good” implementation. XX reword

Macro names. One has to consider the naming rules [30, global.names] in C/C++ when naming

the bespoken macros. Using a forbidden identifier leads straigt to undefined behaviour, yet can

have some unmatched advantages in this case.

Using an “allowed” macro name like CUDA_HOST and CUDA_DEVICE, has several disadvantages:
Other developers need to know the macro name, the global namespace gets clobbered with names,

and the code gets cluttered with non-standard keywords. See Listing ?? for this solution.

If one decides to use a “forbidden” macro name, its best, and safest, to boldly call them again

__host__ and __device__. In this case, they must only be defined when the code is compiled with a

non-Cuda compiler. To decide whether the Cuda specific macros need to be defined one can check

the __CUDACC__macro. This macro is only defined when nvcc steers the compilation process of Cuda

source files. In particular, the macro is still defined after nvcc passes control over to the host compiler

(which than compiles the preprocessed source files by nvcc without any Cuda specific language

constructs). XX rephrase The big plus of it is, that it does not require any additional knowledge

by other developers, and it may be also be applicable to third party Cuda code. Unfortunately, this

name incurs UB since identifiers starting with two underscores are reserved to be used by the

compiler. Yet, it is very unlikely that Solution B will break any code. Indeed, if a compiler shall be

a compatible host compiler for nvcc, then the identifiers __host__, __device__, etc... must not

be used by the host compiler. Thus, a potential host compiler will not use these identifiers for its

own purposes. Furthermore, legacy code has lots of identifiers starting with two underscores. So, a

compiler will do nothing bad to code with such identifiers whenever possible.

See Listing 2 for this solution.

2.1.6 Assessment.

+ Easy to use.

− Not always possible. The host and device implementation may be different or there may not

be any implementation for either host or device code.

2.1.7 Known Usages.

• Boost/Utility [31] uses a combination

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 5

Listing 3: Host device everything

#include "cudatags_ub.h"

struct HD {

__host__ __device__

static void value() {}

};

template < typename T >

__host__ __device__

void func() {

T::value ();

}

int main() {

func < HD >();

}

#define BOOST_GPU_ENABLED \

__host__ __device__

• Eigen [32] uses a variant

#ifdef /* some Eigen macro */

#define EIGEN_DEVICE_FUNC \

__host__

#else

#define EIGEN_DEVICE_FUNC \

__host__ __device__

#endif

• Dimetor [35] uses a solution similar to the code in Listing 2.

2.2 Pattern: Conditional function body

2.2.1 Context. You have some “functionality” which shall be useable both with Cuda and non-Cuda

compilers, both on the host and device side. To implement the “functionality”, you need to use host

or device side specific constructs or the necessary implementations differ.

2.2.2 Problem. XX Symptom: suboptimal implementations (functions), code duplications

2.2.3 Solution. Use preprocessor macros to determine whether we are in device or host code, and

to guide the compilation process.

, Vol. 1, No. 1, Article . Publication date: April 2024.

6 Thomas Mejstrik

Listing 4: Conditional compilation: release_assert

#include <cstdlib >

#ifdef __CUDA_ARCH__

static constexpr bool cuda_arch = true;

#else

static constexpr bool cuda_arch = false;

#endif

__host__ __device__

void release_assert(bool flag) {

if(!flag) {

#ifdef __CUDA_ARCH__

__trap ();

#else

std::abort ();

#endif

}

}

2.2.4 Example implementation. See Listing 4. In order to make different function bodies for host

and device code, we use the macro __CUDA_ARCH__. __CUDA_ARCH__ is defined when device code is

compiled, i.e. after nvcc passes control over to the host compiler __CUDA_ARCH__ is not defined.5

Listing 4 presents the function release_assert, taking an argument of type bool. If the argument

is false then a runtime error is triggered. In device code this is done by calling __trap, which

aborts the kernel execution. in host code this is done by calling std::abort. Note that, in production

code one may want to use less severe means, and/or want to print out debug info to stderr

beforehand [13, 14].

2.2.5 Assessment.

+ Easy to understand and use

+ Given that there is both a sensible host and a device implementation, this solution is often

the last resort.

◦ Source code is cluttered with preprocessor directives. which is usually not a problem when

the function body is short. Otherwise, the patterns described in [26] may help.

−

2.2.6 Known usages.

• Eigen

5
See Appendix B for the compilation process.

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 7

Listing 5: Wrong solution for Conditional compilation

#include "cudatags.h"

struct H {

__host__

static void value() {}

};

template < typename T >

__host__ __device__

void func() {

T::value ();

}

int main() {

#ifndef __CUDA_ARCH__ //

func < H >(); // UB

#endif //

}

static float infinity () {

#if defined(EIGEN_CUDA_ARCH)

return CUDART_INF_F;

#else

return HIPRT_INF_F;

#endif

}

• Most likely in every larger Cuda codebase

2.2.7 Pitfalls to Avoid. There are some restrictions on how __CUDA_ARCH__ can be used. For this

papers scope, the most important are: The signature of functions, function templates and instantiated
function templates, as well as the arguments used to instantiate function templates must not depend
on whether __CUDA_ARCH__ is defined or not [5]. This implies that the solution in Listing 5 is not a

valid one, since func< H > is only instantiated when __CUDA_ARCH__ is undefined.6

One may be tempted to use if constexpr (introduced in C++17) to get rid of the preprocessor.

Unfortunately, this is a bad idea due to C++ rules. if constexpr works only in templated functions,

and for arguments which depend on the functions template types (so-called dependent types). If if

constexpr is used differently one faces undefined behaviour.[stmt.if][30]

2.2.8 Notes. The patternsHost device everything and Conditional function body are related.

The difference is, that the former one only makes changes to the function declaration, whereas the

latter one additionally introduces changes in the function body.

6
Although the program in Listing 5 is not a valid one, nvcc 12.1 gives no warning when compiling it.

, Vol. 1, No. 1, Article . Publication date: April 2024.

8 Thomas Mejstrik

Listing 6: Constexpr everything

#ifndef __CUDACC_RELAXED_CONSTEXPR__

#error "Must be compiled with:" \

"--expt -relaxed -constexpr"

#endif

struct S {

constexpr static int value() {

return 42;

}

};

template < typename T >

__global__

void kernel(T t) {

printf("%i", t.value());

}

int main() {

kernel <<< 1, 1 >>>(S{});

return cudaDeviceSynchronize ();

}

2.3 Pattern: Constexpr everything

2.3.1 Context. You have some “functionality” which shall be be compilable both with Cuda and

non-Cuda compilers, and both on the host and device side. Its implementation makes sense both

on the host and the device side. Furthermore, the “functionality” is implemented as a constexpr

function and no code changes can be made to the function, e.g. it is a third party function, and you

compile with nvcc.

2.3.2 Problem. The code currently does not compile, or the compiler spits out compiler warnings,

or it is not known whether stray fubnction calls happen.

2.3.3 Solution. Since the function is decorated with constexpr, we add the compilation option

--expt-relaxed-constexpr [6]. This allows device code to invoke __host__ constexpr functions,

and host code to invoke __device__ constexpr functions.

We assert whether the source code is compiled with --expt-relaxed-constexpr by checking

whether the macro __CUDACC_RELAXED_CONSTEXPR__ is defined, and produce a compilation error

when not. This way, the user is informed how to correctly compile the program, when she attempts

to compile it wrongly, see Listing 6.
7

Be aware that --expt-relaxed-constexpr is an experimental feature and only works with nvcc.
In fact, it is experimental since at least Cuda 8.0 from 2016, which is quite a long time for a feature

to stay experimental. The behaviour of this option may change in future Cuda releases.

7
The triple chevron syntax <<< ... >>> is used to call a __global__ function from a __host__ function, and thus to

start a computation on the device. The numbers between the brackets determine how many threads are started, for our toy

example we are content with one thread.

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 9

2.3.4 Pitfalls to avoid. In order that a function can be made constexpr, it must satisfy some

requirements. [23] In general it is not allowed to call some intrinsics. Thus, a constexpr function

may be slower at runtime, or need more ressources, than a non-constexpr function. In order to

accomodate for this, a combination of this pattern with Pattern: Conditional function body

may be advantageous.

2.3.5 Assessment.

++ Is also applicable to third party constexpr functions, e.g. functions in the C++ standard library

+ Easy to use.

+ Needs minimal changes to the source code.

− Only applicable to constexpr functions.

− Is an experimental feature.

− It is unclear, whether this feature is compatible with future C++ versions.

− The source code is not self contained anymore, but needs to be compiled with certain compiler

flags and with a certain compiler (nvcc)

2.3.6 Known Usages.

• LBANN [33] uses a defensive strategy: If the source is compiled with --expt-relaxed-const-

expr, then functions are annotated with constexpr, otherwise with __host__ __device__.

2.4 Pattern: Disable the warnings

2.4.1 Context. You have some code, which is compiled for both host and device side. You know stray

calls are not possible for some reasons. Yet, the compiler does not and thus spits out compilation

warnings.

2.4.2 Problem. The compiler spits out compiler warnings which can be ignored and which mask

other important warnings.

2.4.3 Solution. Disable the compiler warnings of the stray function calls. Since disabling warnings

is usually a bad idea, it should happen in a the most fine grained fashion possible.

2.4.4 Example implementations. nvcc provides various ways to disable warnings regarding stray

calls. Since clang emits much less warnings than nvcc in this regard, we do not discuss clang here,

which has similar ways to disabled warnings.

Themost fine grained control is acchieved by using the pragmas nv_diagnostic push, nv_diag_suppress,

and nv_diagnostic pop. [11] They disable warnings for a specific part of the code.

The second set of pragmas consists of #hd_warning_disable and #nv_exec_check_disable. If one

of the pragmas is placed in front of a function, then the compiler does not spill out warnings for

bad function calls originating from that function The pragmas only affect the function they are

placed in front of, in particular there is no need for a pragma which enables the warnings again.

The pragmas also do not affect function calls in subfunctions.

If one wants to disable warnings regarding stray calls globally one can use the compiler options

–diag-suppress 20011,20014.8 If one wants to disable all warnings, then one can use –disable-warn-
ings.9

8
There must not be whitespace between the numbers.

9
The numbers 20011 and 20014 in the listings and the compiler option examples, are the warning ids regarding stray function

calls. They are not fixed, and may be different in a new nvcc version. To obtain the warnings ids, one can use the compiler

option –display-error-number.

, Vol. 1, No. 1, Article . Publication date: April 2024.

10 Thomas Mejstrik

Listing 7: Disable the warnings

struct H {

static void value() {}

};

#pragma hd_warning_disable

template < typename T >

__host__ __device__

void func() { T::value (); }

int main() {

func < H >();

}

2.4.5 Pitfalls to avoid. Care should be taken with the pragmas #hd_warning_disable and #nv_-

exec_check_disable, which are undocumented; Yet Nvidia uses them itself in open sourced code.

Their exact behaviour is not clear. In some cases one pragma works, in some cases the other, in

some cases none. Even worse, it is reported that a wrong usage of the pragmas may lead to wrongly

compiled code [12].

The biggest problem though is maintanance. Even if disabling the warning is correct currently, a

code change in future may change this situation, and then the disabled warnings may hide severe

programming errors.

2.4.6 Assessment.

+ Easy to use

◦ Each function has to be annotated manually.

− These pragmas are undocumented

− Wrong usage of these pragmas may lead to wrongly compiled code [12]

− May hide programming errors. A combination of using these pragmas with release_assert

(in non-performance-critical code) should be considered

− Even when one “knows” that the pragmas can be used at the time when the code is written,

things may change in the future.

2.4.7 Known Usages.

• Thrust [34]

#pragma nv_exec_check_disable

template < typename DerivedPolicy ,

typename ForwardIt ,

typename LessThanComp >

__host__ __device__

ForwardIt lower_bound(/* ... */);

• Eigen [32] XX Code example would be nice

2.4.8 Notes. The Pattern: Constexpr everything can be seen as an application of the Pattern:

Disable the warnings, because by making everything constexpr we implicitely disable the

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 11

Listing 8: Solution: #ifdef block with __CUDA_ARCH__

#include "release_assert.h"

struct H {

__host__ __device__

static void func() {

release_assert(!cuda_arch);

/* body */

}

};

template < typename T >

__global__

void kernel(T t) { t.func (); }

int main() {

kernel <<< 1, 1 >>>(H{});

return cudaDeviceSynchronize ();

// returns non -zero code

}

compiler warnings. A notable difference between these patterns is, that the functions in the Pattern:

Constexpr everything should all qualify to be called on the host and the device side. Wherease,

for Pattern: Disable the warnings we have some functions which must not be called from one of

the sides. XX This note concerns also other patterns. Check where it is best to put it to.

2.5 Pattern: Defensive Programming

XX Is this is an original pattern?

2.5.1 Context. You have some “functionality” which cannot run on host or device side for certain

inputs, because there exists no sensible implementation for one of the sides for certain inputs.

At compile time you do not have enough knowledge to decide whether stray function calls are

possible, or you cannot cast your knowledge into a shape which can be used at compile time.

2.5.2 Problem. You want to make sure at runtime that no stray function calls happen.

2.5.3 Solution. We use function dispatching at runtime and take measures if stray calls still

happen, both by exploiting runtime information. To get rid of compiler warnings, we can use

the patterns Pattern: Disable the warnings, Pattern: Constexpr everything, or Pattern: Host

device everything.

The macro __CUDA_ARCH__ can be used to decide whether one is in __host__ or __device__ code.

But, bugs always creep in, and thus it is vital to recognize such errors. How to handle such an

error depends on the application, one can either try to continue - which is typically the need in

availability, safety, or security critical applications, or to error out as fast as possible - which is (if

possible) usually the better approach, and known as offensive programming. XX citations?

, Vol. 1, No. 1, Article . Publication date: April 2024.

12 Thomas Mejstrik

2.5.4 Implementation example for offensive programming. The simplest solution is to just abort

the program whenever we end up in the wrong path, see Listing 8.
10
In that listing, S::value() is

(wrongly) called in device code, and thus a runtime error on the GPU is triggered. The runtime

error is not reported back to host side, until one checks the Cuda error code in host code,
11
here

again using cudaDeviceSynchronize.

2.5.5 Assessment.

+ In most cases applicable

− Check of execution space is done at runtime.

2.6 Pattern: Conditional Host Device Template

XX Christoph: Das Pattern HOST DEVICE TEMPLATE finde ich sehr gut. Es beschreibt

eine gut verständliche Lösung. Nach der Solution wird jedoch eine Variante beschrieben

und es gibt auch eine eigene Assessment-Section für die Variante. Das macht das Pattern

wieder komplizierter. Ist es wichtig, dass diese Variante so detailiert abgehandelt wird?

Würde nicht einfach nur ein Satz in der Solution reichen, welcher erwähnt, dass man mit

Macros der Code Duplication entgegenwirken könnte?

2.6.1 Context. You have some code, which is compiled for both host and device side, and the

compiler complains about stray function calls. Yet, at compile time at the call side it is known

whether a host and/or device function can be called, even when the caller does not know its own

execution space at compile time. Furthermore, the code can be cast into a template function.

2.6.2 Problem. You want to make sure at compile time, that no stray calls can happen. XX Symp-

tom: Code compiles, although it should not

2.6.3 Solution. We define three versions of the same function (in this section called triplet) – a

__host__, a __device__, a __host__ __device__ function – and make it such that always only one

can be called, depending on the information passed by the caller (in general the passed types of the

arguments). Subsequently, the compiler cannot instantiate a wrong function and we cannot get

stray function calls. If we would try to do a stray function call, then we would get a compilation

error.

More precisely, we define a compile time function hdc<>12, which translates the passed types

to an enum HDC, see Listing 9. HDC comprises three values: HDC::Hst, HDC::Dev or HDC::HstDev.13

Our triplet of functions has an additional template parameter, which defaults to the output of

hdc<>. Only if this output equals HDC::Hst, HDC::Dev or HDC::HstDev, the corresponding __host__,

__device__ or __host__ __device__ function can be called.

To guide the compiler subsequently to the correct overload of our triplet, we add an additional

template parameter hst_ to all of them. The parameter hst_ is in general not meant to be set by

the user, but shall always take the return value from hdc<> (see [19] for a way how to achieve

this). Finally we use a requires clause, which compares the value of hst_ with the return value of

hdc<>.14 See Listing 10 for an example.

10
The variable cuda_arch is usable in device code, although not being marked with __constant__ or __shared__, due

to [8].

11
This is not entirely true: __trap raises an interrupt on the host side which in theory could be handled.

12
Short for: Host Device Compatibility

13
We note again that, only due to restricted space we use very short names here. In production code, some more descriptive

names should be used.

14
Up to C++17 we cannot use a requires clause, but have to resort to SFINAE, see Listing 102 for a not-totally-ugly

approach.

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 13

Listing 9: Host Device Compatibility

enum class HDC { Hst , Dev , HstDev };

Listing 10: Conditional Template Instantiation

template < typename T, HDC x = hdc <T> >

requires(x == HDC::Hst)

__host__ void func(T) {/*body*/}

template < typename T, HDC x = hdc <T> >

requires(x == HDC::Dev)

__device__ void func(T) {/*body*/}

template < typename T, HDC x = hdc <T> >

requires(x == HDC:: HstDev)

__host__ __device__ void func(T) {/*body*/}

// Usage:

template < typename T >

__host__ __device__

void wrapper(T t) {

func(t);

}

hdc< T > inspects for the given type T, whether a member variable of name T::hdc is present.

If so, then hdc< T > returns its value. Otherwise it returns HDC::Hst, see Listing 101. XX Merge

texts

2.6.4 Assessment.

◦ This solution only works for template functions or functions of template classes. This has

some severe implications:

+ More possibilities for compiler optimizations.

− Source code is physically coupled tighter, potentially leading to longer compilation times.

− The definition of the function must go into a header file.

− More code in header files and thus compilation times may increase.

− Code bloat and thus increased compilation times.

− Code duplication

2.6.5 Variant with macros. XX Listing 11 als usecase bei dimetor

The above solution, has the big drawback that one has to duplicate code manually three times.

This can be automated using macros, see Listing ??.
15

But using macros does not solve all problems. Even worse it introduces a sever new one: Since

the function body is in a macro now, debugging gets hard to impossible.
16

XX merge texts

15
A backslash as last character on a line is a line continuation. Since macros must be written in exactly one line, using ‘\‘

is used to split long macros into multiple lines.

16
Actually, we do not know of any compiler which allows debugging a function defined in a macro.

, Vol. 1, No. 1, Article . Publication date: April 2024.

14 Thomas Mejstrik

2.6.6 Assessment of variant with macros. Apart from the points in the solution before, we have:

+ Duplicated code is automatically generated.

+ Very easy to use for the user

◦ Reasonably easy to use for the implementer.

− Since the body of the function is in a macro, debugging is hard.

2.6.7 Known usages.

• Dimetor (Closed source code) [35]

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 15

#define host_device_macro(\

templateargs , hdc , body) \

template < templateargs , \

HDC hdc_ = hdc > \

requires(hdc_ == HDC::Hst) \

__host__ body) \

template < templateargs), \

HDC hdc_ = hdc > \

requires(hdc_ == HDC::Dev) \

__device__ body) \

template < templateargs), \

HDC hdc_ = hdc > \

requires(hdc_ == HDC:: HstDev) \

__host__ __device__ body

// Usage:

struct D {

static constexpr HDC hdc = HDC::Dev;

__device__ void func() {}

};

struct H {

__host__ void func() {}

};

host_device_macro(

(typename T),

(hdc < T >),

(void func(T t) { t.func (); }))

__device__ void d() {

// func(H{}); // does not compile

func(D{});

}

__host__ void h() {

func(H{});

// func(D{}); // does not compile

}

}

2.6.8 Pitfalls to avoid. XX rephrase The program is ill-formed, no diagnostic required, if: (6.1)

no valid specialization can be generated for a template or a substatement of a constexpr if statement

within a template and the template is not instantiated, or

A similar, also invalid, idea is to use a constant dependent on __CUDA_ARCH__ as a non-type

template parameter to some function. Whether using a if constexpr clause with a constant

, Vol. 1, No. 1, Article . Publication date: April 2024.

16 Thomas Mejstrik

dependent on __CUDA_ARCH__ in the body is unclear. We have no authoritative answer from Nvidia

yet.

2.7 Pattern: Function dispatching

2.7.1 Context. You applied Pattern: Conditional Host Device Template.

2.7.2 Problem. You want to get rid of code duplication. XX This is not the problem, but the

context .

2.7.3 Solution. This can be acchieved using a combination of the patterns above. Firstly, we use

the Pattern: Conditional Host Device Template to guide the compiler to the correct function of

the dispatcher __host__, __device__ and __host__ __device__ triplet. This function than forwards

its argument to one __host__ __device__ function. The latter call is (for the compiler) a stray call,

but due to our first indiraction, we know that the stray call cannot happen. Indeed, the dispatching

function is never compiled for a case where a stray function call could happen.

Secondly, we can safely disable the compiler warnings emerging from the (unhappening) stray

calls.

2.7.4 Implementation example. See Listing 1117 for the solution. One can see, that this solution

again needs boilerplate code – One has to write the code to forward the arguments to the actual

function (here: func_imp) by hand. As for the ??, one can use a macro to generate the boilerplate

code. But in this situation, the body of the function is not part of the macro, and thus still debuggable.

2.7.5 Assessment.

+ No code duplication

+ Code is mostly debuggable.

+ Easy to use for the user.

◦ Library implementer again has to write some boilerplate code.

− Not straight forward to write and understand, and thus hard to maintain in the long term.

− One indirection for each function call in debug mode via std::forward. For implications of

this, see [27, Item 30]. In Release mode this indirection most likely is optimized out.

2.7.6 Known usages. No known usages.

2.8 Anti Pattern: Link Pattern

XX Other name: ch for cu Pattern, The Device Wrapper, Link Pattern Do not know how

to make sourcefiles for gcc and clang (.cu) withou code/file duplications.

2.8.1 Context. You have code which must be in header files. Yet you also want to call cuda or host

intrinsics.

2.8.2 Problem. Directly calling those functions leads to compilation error, since the functions are

not always defined during the compilation process.

2.8.3 Solution. You introduce an abstraction layer: You put the intrinsic into its own library, and

link against this library during compilation. To be able to compile the library, you use a suitable

pattern described above, most likely the Pattern: Conditional function body, Pattern: Disable

the warnings, or Pattern: Function dispatching.

17
nvcc implicitly considers std::move and std::forward to have __host__ __device__ annotations. Therefore, the code

in Listing 11 is valid. [7]

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 17

Listing 11: Function dispatching

struct H {

void func() {}

};

struct D {

static constexpr HDC hdc = HDC::Dev;

__device__ void func() {}

};

#pragma nv_exec_check_disable

template < typename T >

__host__ __device__

void func_impl(T && t) {

t.func ();

}

/* macro generated: start */

template < typename T, HDC hdc = hdc <T> >

requires(hdc == HDC::Hst)

__host__ void func(T && t) {

return func_impl(std::forward <T>(t));

}

template < typename T, HDC hdc = hdc <T> >

requires(hdc == HDC::Dev)

__device__ void func(T && t) {

return func_impl(std::forward <T>(t));

}

template < typename T, HDC hdc = hdc <T> >

requires(hdc == HDC:: HstDev)

__host__ __device__ void func(T && t) {

return func_impl(std::forward <T>(t));

}

/* macro generated: end */

// Usage:

__global__ void kernel () {

//func(H{}); // error

func(D{});

}

int main() {

func(H{});

//func(D{}); // error

}

, Vol. 1, No. 1, Article . Publication date: April 2024.

18 Thomas Mejstrik

Listing 101: Host Device compatibility: hdc

#include <type_traits >

HAS_MAKE(hdc)

template < typename T >

struct hdc_impl {

struct h {

static constexpr HDC hdc = HD::Hst;

};

static constexpr HDC hdc =

std:: conditional_t < has_hdc <T>,

T, h >::hdc;

};

template < typename T >

static constexpr

HD hdc = hdc_impl < T >::hdc;

// Usage example

struct S {};

struct D {

static constexpr HDC hdc = HDC::Dev;

};

static_assert(hdc <S> == HDC::Hst);

static_assert(hdc <D> == HDC::Dev);

APPENDIX

The appendix present the helper functions and macros used in the paper in Appendix A, elaborates

on some C++/Cuda terms in Appendix B, and referes to a proposal to language changes to Cuda in

Appendix C.

A APPENDIX: HELPER FUNCTIONS AND MACROS

This section collects the helper functions used in the listings above. They are by itself interesting,

but none of them are new.

A.1 Host Device compatibility (hdc)

hdc< T > inspects for the given type T, whether a member variable of name T::hdc is present. If so,

then hdc< T > returns its value. Otherwise it returns HDC::Hst, see Listing 101.

Depending on the use case, one may want to alter the code such that hdc returns HDC::HstDev for

fundamental types like int,... and trivial C-style structs. To this end, the type traits std::is_fun-

damental and std::is_trivial can be used, std::is_pod should not be used, since it is deprecated

since C++20.

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 19

Listing 102: REQUIRES (C++11)

#include <type_traits >

#define REQUIRES(...) \

typename std::enable_if < \

__VA_ARGS__ , bool \

>::type = false

// usage example

template < typename T,

REQUIRES(std:: is_integral_v <T>) >

T inc(T i) { return i + 1; }

Listing 103: has_xxx (C++20)

#define HAS_MAKE(name) \

template < typename T > \

concept has_ ## name = \

requires(T t) { &T::name; };

HAS_MAKE(foo);

A.2 REQUIRES

If one cannot use a requires clause (because C++20 is not available), one has to fall back to the

std::enable_if pattern [22]. Unfortunately, this pattern is mostly incomprehensible for people

who did not use it before. The macro REQUIRES, given in Listing 102
18

generates all the needed

boilerplate code, and nearly resembles the syntax of the requires clause. XX rephrase

There is minor issure with the REQUIRESmacro. It is only applicable to template functions. Or said

in another way, it cannot be used when the function in question cannot be made into a template. In

particular, it is not
19
applicable to some special member functions of template functions, e.g. the

copy constructor.
20

A.3 has_xxx type trait

The trait has_xxx returns whether a class has a member function or variable named xxx. We present

a version for C++17, and one for C++20.

A C++20 version is given in Listing in 103. For each name one has to generate a trait using the

macro HAS_MAKE.

18
The macro uses __VA_ARGS__ in order to be able to handle arguments which include commata.

19
To overcome this problem, the standard approach up to C++17 is to inherit from a templated class which has non-templated

copy constructors. This is so messy, that we refrain from giving a code example.

20
Sadly, nvcc 12.2 seems to have bug and does not handle requires clauses on copy constructors correctly in all cases,

see Bug No. 4212135. Thus, it may currently not be possible to apply the pattern Function dispatching to the copy

constructor easily.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://developer.nvidia.com/bugs/4212135

20 Thomas Mejstrik

Listing 104: has (C++17)

#include <type_traits >

template < typename T, typename Lambda >

constexpr auto has_(Lambda && la)

-> decltype(la(std::declval <T>()), true)

{ return true; }

template < typename >

constexpr auto has_(...) -> bool

{ return false; }

#define has(T, EXPR) \

has_ < T >(\

[](auto && obj) \

-> decltype(obj.EXPR){})

// For compatibility to 20 version

#define HAS_MAKE(name) \

template <typename T> static constexpr \

bool has_ ## name = has(T, name);

// usage example

struct X {

int foo;

};

static_assert(has(X, foo));

HAS_MAKE(foo)

static_assert(has_foo <X>);

static_assert(!has_foo <int >);

The C++17 version in Listing 104 [21] has the advantage, that one does not need to generate a

type trait for each name. For compatibility reasons to our code listing, we nevertheless define such

a helper trait.

A C++14 version (with slightly different properties) can be found at [20].

B APPENDIX: CUDA/C++ BACKGROUND

XX Introductory text missing

nvcc. The nvidia Cuda compiler nvcc processes Cuda code in two steps. First, it processes all

device (GPU) specific code sections by itself, and then passes a processed version of the code to the

host compiler, usually gcc or clang.

Function execution space specifiers. Cuda distinguishes between __host__, __device__, and __glo-

bal__ functions [2]: __host__ functions run on the CPU, __device__ and __global__ functions run

on the GPU. __global__ function are the entry point for __host__ functions to start something on

, Vol. 1, No. 1, Article . Publication date: April 2024.

__host__ __device__ 21

the GPU. Unsurprisingly, __host__ functions are allowed to call __host__ and __global__ functions,

__global__ and __device__ functions are allowed to call __global__ and __device__ functions.

Functions without annotations are implicitly considered as __host__ functions by the compiler.

Cuda error checking. Since Cuda has no support for exceptions in device code, error handling

is done by checking return error codes. Furthermore, an error on the GPU usually never leads

to a termination of the program, just to undefined behaviour if the GPU is used subsequently.

Thus, after each (potentially failing) Cuda call, one should check the error code. We will (ab)use

cudaDeviceSynchronize for this task.21 A return code of 0 means success.

Undefined Behaviour (UB). C++ has a feature called undefined behaviour (UB). Whenever an

operation results in UB, the behaviour of the program (starting from that particular operation) is

not defined any more. In other words: Anything is allowed to happen. For an example of UB see

Listing 1.

The compiler is not mandated to, nor is it able to, diagnose all potential appearances of UB. On
the other hand, just because something is UB, does not mean that the compiler is mandated to

generate broken code.

Novices in C++ usually are usually not aware of the dangers of UB, until they get more proficient

with the language, up to some point where they greatly overestimate the danger of it.

Further information. Information about restrictions in device code can be found in the Cuda Doc-
umentation [9, Section 14]. Compilers, and different versions of it, can be tested using godbolt [28].

C APPENDIX: PATTERNS WHICH NEED LANGUAGE CHANGES

A proposal for solving the described issue elegantly is submitted to Nvidia [18]. XX Remove

this?

REFERENCES

[1] LLVM, Compiling CUDA with clang llvm.org/docs/CompileCudaWithLLVM.html

[2] Nvidia, CUDA C++ Programming Guide - Function Execution Space Specifiers, docs.nvidia.com/cuda/cuda-c-program-

ming-guide/index.html#function-execution-space-specifiers.

[3] Nvidia, CUDA C++ Programming Guide - Kernels, docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#-

kernels.

[4] Nvidia, CUDA C++ Programming Guide - __global__ Function Argument Processing, docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html#global-function-argument-processing.

[5] Nvidia, CUDA C++ Programming Guide - Preprocessor Symbols, docs.nvidia.com/cuda/cuda-c-programming-guide/in-

dex.html#preprocessor-symbols.

[6] Nvidia, CUDA C++ Programming Guide - Constexpr functions and function templates, docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html#constexpr-functions-and-function-templates.

[7] Nvidia, CUDA C++ Programming Guide - Constexpr functions and function templates, docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html#rvalue-references.

[8] Nvidia, CUDA C++ Programming Guide - Const-qualified variables, docs.nvidia.com/cuda/cuda-c-programming-guide/-

index.html#const-qualified-variables.

[9] Nvidia, CUDA C++ Programming Guide - C++ Language Support, docs.nvidia.com/cuda/cuda-c-programming-guide/in-

dex.html#c-language-support.

[10] Nvidia, CUDA C++ Programming Guide - Notes on __host__ __device__ lambdas, docs.nvidia.com/cuda/cuda-c-pro-

gramming-guide/index.html#notes-on-host-device-lambdas.

[11] Nvidia, Reducing Application Build Times Using CUDA C++ Compilation Aids, developer.nvidia.com/blog/reducing-ap-

plication-build-times-using-cuda-c-compilation-aids/

[12] konstantin_a, #pragma hd_warning_disable causes nvcc to generate incorrect code (cuda 9.1)., forums.developer.n-

vidia.com/t/57755.

21
In production code error checking should be done differently, especially since cudaDeviceSynchronize is not a

reliable way to check for all possible Cuda errors. [14, 15]

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://llvm.org/docs/CompileCudaWithLLVM.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#function-execution-space-specifiers
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#function-execution-space-specifiers
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#preprocessor-symbols
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#preprocessor-symbols
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#constexpr-functions-and-function-templates
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#constexpr-functions-and-function-templates
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#rvalue-references
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#rvalue-references
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#const-qualified-variables
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#const-qualified-variables
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-support
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-language-support
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#notes-on-host-device-lambdas
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#notes-on-host-device-lambdas
https://developer.nvidia.com/blog/reducing-application-build-times-using-cuda-c-compilation-aids/
https://developer.nvidia.com/blog/reducing-application-build-times-using-cuda-c-compilation-aids/
https://forums.developer.nvidia.com/t/pragma-hd-warning-disable-causes-nvcc-to-generate-incorrect-code-cuda-9-1/57755
https://forums.developer.nvidia.com/t/pragma-hd-warning-disable-causes-nvcc-to-generate-incorrect-code-cuda-9-1/57755

22 Thomas Mejstrik

[13] Richard, Is it possible to get assertion info from within a CUDA kernel?, stackoverflow.com/q/72565993/8052809.

[14] talonmies, What is the canonical way to check for errors using the CUDA runtime API?, stackoverflow.com/q/14038589/-

8052809.

[15] Robert Crovella, States of memory data after cuda exceptions stackoverflow.com/a/31642573/8052809.

[16] Jan Zapletal, calling a __host__ function from a __host__ __device__ function, stackoverflow.com/q/62810274/8052809.

[17] WilliamKF, Jakub Klinkovský, How to disable Cuda host device warning for just one function?, stackoverflow.com/a/-

57641289/8052809.

[18] Thomas Mejstrik, __host__ __device__ - Generic programming in Cuda, developer.nvidia.com/bugs/4258859.

[19] HolyBlackCat, How can I prevent user from specifying a function template parameter, forcing it to be deduced?, stackover-
flow.com//a/58771661/8052809.

[20] Kirill V. Lyadvinsky, Johannes Schaub - litb, How to detect whether there is a specific member variable in class?, stack-
overflow.com/a/1007175/8052809.

[21] andy, Dmytro Ovdiienko, Templated check for the existence of a class member function?, stackoverflow.com/a/-

62292282/8052809.

[22] cppreference.com, std::enable_if, cppreference.com/w/cpp/lan/guage/constexpr.

[23] cppreference.com, constexpr, cppreference.com/w/cpp/types/enable_if.

[24] cppreference.com, SFINAE - Substitution Failure Is Not An Error, cppreference.com/w/cpp/language/sfinae.

[25] Wikipedia, Substitution failure is not an error, en.wikipedia.org/wiki/Substitution_failure_is_not_an_error.
[26] Christopher Preschern. 2019. Patterns to escape the #ifdef hell, Proc. of the 24th European Conference on Pattern

Languages of Programs (EuroPLop ’19) 2, 1–12, ACM, doi: 10.1145/3361149.3361151.

[27] Scott Meyers, Effective Modern C++, O’Reilly Media, 2014,

[28] Matt Godbolt, Compiler Explorer, godbolt.org.
[29] cppreference.com, cppreference.com/.

[30] Working Draft, Programming Languages – C++, eel.is/c++draft/.
[31] Beman Dawes, Boost.Utility [Computer Software], boost.org/doc/libs/1_82_0/libs/utility/doc/html/index.html

[32] Benoît Jacob, Gaël Guennebaud, et al., Eigen [Computer Software], gitlab.com/libeigen/eigen.

[33] LLNL, LBANN: Livermore Big Artificial Neural Network Toolkit [Computer Software], github.com/LLNL/lbann.

[34] Nvidia, Thrust [Computer Software] docs.nvidia.com/cuda/thrust/index.html.

[35] Dimetor, AirborneRF [Computer Software], (2020), www.dimetor.com.

, Vol. 1, No. 1, Article . Publication date: April 2024.

https://stackoverflow.com/q/72565993/8052809
https://stackoverflow.com/q/14038589/8052809
https://stackoverflow.com/q/14038589/8052809
https://stackoverflow.com/
https://stackoverflow.com/q/62810274/8052809
https://stackoverflow.com/a/57641289/8052809
https://stackoverflow.com/a/57641289/8052809
https://developer.nvidia.com/bugs/4258859
https://stackoverflow.com/a/58771661/8052809
https://stackoverflow.com/a/58771661/8052809
https://stackoverflow.com/a/1007175/8052809
https://stackoverflow.com/a/1007175/8052809
https://stackoverflow.com/a/62292282/8052809
https://stackoverflow.com/a/62292282/8052809
https://en.cppreference.com/w/cpp/language/constexpr
https://en.cppreference.com/w/cpp/types/enable_if
https://en.cppreference.com/w/cpp/language/sfinae
https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
https://doi.org/10.1145/3361149.3361151
https://godbolt.org/
https://cppreference.com/
https://eel.is/c++draft/
https://www.boost.org/doc/libs/1_82_0/libs/utility/doc/html/index.html
https://gitlab.com/libeigen/eigen
https://github.com/LLNL/lbann
https://docs.nvidia.com/cuda/thrust/index.html
https://www.dimetor.com

	Abstract
	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Notation and Targeted Systems

	2 The patterns
	2.1 Pattern: Host device everything
	2.2 Pattern: Conditional function body
	2.3 Pattern: Constexpr everything
	2.4 Pattern: Disable the warnings
	2.5 Pattern: Defensive Programming
	2.6 Pattern: Conditional Host Device Template
	2.7 Pattern: Function dispatching
	2.8 Anti Pattern: Link Pattern

	A Appendix: Helper functions and macros
	A.1 Host Device compatibility (`hdc`)
	A.2 `REQUIRES`
	A.3 `has_xxx` type trait

	B Appendix: Cuda/C++ background
	C Appendix: Patterns which need language changes
	References

