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ABSTRACT
Injection-based testing for refactoring is a pattern that minimizes
the need for manual editing when altering the internal behaviour
of a code base which does not have unit tests yet in place. Neither
does it rely on a compilation or a linking process nor does it make
assumptions on the structure of the code. Thus, it can be particu-
larly useful for refactoring code that has been written in scripting
languages, and specifically targets the research and engineering
context. We describe the pattern and propose a set of functions for
its application. The applicability of code injection for refactoring is
highlighted via specific examples for deriving unit and integration
tests. Finally, we comment on customizing the pattern and give
practical advice for its implementation.
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• Software and its engineering→ Software development tech-
niques; Software testing and debugging; Language features.
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1 INTRODUCTION
We introduce the pattern Injection Testing to facilitate the refactoring
of existing code, i. e. changing the internal structure of the code
without affecting its external behaviour [1]. The injection testing
pattern enlarges the set of code bases to which testing provisions
can be added retrospectively.

The pattern allows inferring the internal behaviour of code by
defining designated interception points as comments in the source
code. No strong requirements are placed on the programming style
of the code, which is especially important for refactoring code does
not posses testing provisions, in the following called legacy code.

Techniques for refactoring are well established, see e. g. [2–9],
and often rely on the existence of an accompanying test suite [10].
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Figure 1: Refactoring cycles: (1) In refactoring, one often has
to start with the Refactor step. (2) Using the injection testing
pattern one can start with the Write a succeeding test step,
and thus, make the refactoring step safe.
The refactoring step not only concerns the production code,
but also the accompanying test suite.

The idea is to start from a succeeding test suite, apply the desired
changes, and confirm that the observable behaviour did not change
by running the test suite again, as depicted in Figure 1.

For code without testing provisions, however, this classical refac-
toring cycle indicates a chicken-and-egg problem: It is unclear how
to write a test suite prior to touching the code when no such test
suite is already present. Consequently, in the absence of tests there
is always the risk of unwittingly changing the behaviour of the
code, either by changing interfaces functions, or introducing new
bugs, or – equally bad – by fixing existing bugs on which the code
may rely. Thus, the challenge is intercepting a code‘s internal be-
haviour while at the same time minimizing the amount of manual
editing.

1.1 Existing refactoring solutions
Common interception points arise from the compiler toolchain
and have been summarized under the term “seams”, “. . . a place
where you can alter behaviour in your program without editing in
that place.” [10, Chapter 4].

Pre-processing seams can be accessed via a text replacement en-
gine that automatically changes the source code just before inter-
pretation or compilation. Besides the need for maintaining such an
engine in languages that do not feature a pre-processor, the usage
of such seams necessitates a new compilation/interpretation cycle
for every change that is applied to the code.

Link seams can be used in languages where the compiler/in-
terpreter produces an intermediate representation of the code. In-
tercepting calls to other intermediate representations allows for
the execution of arbitrary code. Similarly to the pre-processor ap-
proach, an additional linking step is required after each refactoring
iteration, impeding the practical applicability of the approach.

Object seams are not compilation-related and use overloading and
polymorphism for intercepting calls to class methods. This requires
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Journal† Matlab unit automatic
submissions tests unit tests

JOSS 25 9 (36%) 3 (12%)
ACM TOMS 19 9 (47%) 2 (11%)

JORS 22 8 (36%) 2 (9%)
J. Stat. Softw. 18 8 (44%) 1 (6%)
Softw. X 78 11 (14%) 5 (6%)

Softw. Imp. 13 2 (16%) 0 (0%)
Table 1: Number of publications of free Matlab software
whose source code is still available, in selected scientific jour-
nals between 2015 and 2021, contrasted with the number of
submissions additionally including unit tested code and au-
tomatic unit testing provisions.
†JOSS: Journal of Open Source Software, ACM TOMS: ACM Transactions on Mathe-
matical Software, JORS: Journal of Open Research Software, J. Stat. Softw.: Journal of
Statistical Software, Softw. X : Software X, Softw. Imp.: Software Impacts.

that both, the programming language, and the programming style
of the code at hand, support object orientation and dependency
injection at least to some degree.

All of the above approaches pose requirements on either the
programming language or the programming style in which the
code has been written. Not every code meets those requirements.

1.2 Code injection
Code injection and code instrumentation refers to changing the
behaviour of a program at runtime by introducing (or injecting)
new code into an existing computer program to alter the execution
path. It is often used for debugging, to add logging capabilities, or
to maliciously overtake other‘s computers.

1.3 Our motivation
Code for numerical computations in engineering, scientific, and
educational contexts are often written incrementally and by fre-
quently changing authors. This can lead to large code bases with
insufficient testing provisions [11].

In fact, an informal survey of software papers published between
2015 and 2021 for Matlab, one of the most common programming
languages in academia [12], indicates that only a small fraction of
submissions includes tests, let alone automated tests using some
specialized testing framework, as indicated in Table 1. This makes
it hard to verify the correctness of the published results.

Also, such code is often written in scripting languages for which
the seams in Section 1.1 are not applicable due to the absence of a
pre-processor, a compilation and a linking step, and thus, makes it
hard to refactor the software into a testable version.

1.4 Overview
In Section 2, we present our injection testing pattern and propose
a set of functions for its efficient implementation

We show how the pattern can be applied to write unit tests in
Section 3.1. The code injection pattern is further exemplified in
Section 3.2, where we discuss how the injection testing pattern can
be used to write integration tests.1

1Unit tests test well-defined, self contained parts of code, whereas integration tests test
the code together with some of its dependencies with respect to specified functional
requirements.

Finally, in Sections 2.6 and 4 we discuss some points regarding
the implementation of our pattern, including the presentation of
the Matlab/Octave2 unit test framework TTEST.

2 INJECTION TESTING PATTERN
2.1 Context
Given a function which needs to be refactored, in the following
also referred to as system under test, that has no or insufficient
testing provisions. Furthermore, this function is written in a style
rendering it “un-testable”.

2.2 Problem
Refactoring without having tests in place bears the risk of breaking
the code. Thus, the challenge is to add tests to existing code while
at the same time limiting the amount of behavioural changes to the
code.

2.3 Forces
• In languages where there are no predetermined points for in-
tercepting the behaviour of code, in the absence of sufficient
testing provisions, one has to apply manual modifications to
the code in order to make it testable. The manual editing of
code with no sufficient testing provisions in place, however,
bears the risk of unwittingly altering its behaviour. There-
fore, the amount of manual edits to the code necessary for
writing tests should be minimized and their potential impact
should be mitigated.

• At the same time, it is desirable to be able inject at arbitrary
positions in the code and to not be reliant on any particular
programming style or other prerequisites for doing so.

• Also, tests should be loosely coupled to the system under
test. In particular, unit tests should only use the SUT‘s public
interface and there should be no test code in the production
code.

• Running tests should need minimal manual intervention,
this means in particular they are preferably written in the
same language, not need special commands for executing
them, and be portable; and thus not rely on third party code.

2.4 Solution
Add tests by injecting3 test code at runtime, defining specific entry
and exit points, and thus minimize the amount of code changes;
optimally by using features directly incorporated in the used pro-
gramming language, so that no external tools are necessary. We
will call the corresponding interception method the injection seam.

To mitigate the risk of the injected code altering the behaviour
of the code base in an unintentional way, we propose the following
“I-triple-A” pattern:

Inject arrange - Act - Assert,
optionally supplemented by an Inject setup stage at the very begin-
ning and a Tear down stage at the very end.

2Octave is a free implementation of the Matlab language.
3We use the term code injection instead of code instrumentation, to stress the point that
we do not just add logging or similar functionality, but arbitrary code to an existing
code base.
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The injection testing pattern closely follows that of a classical
unit test, the AAA (Arrange - Act - Assert) pattern [13, Chapter 3].
In the Arrange section, objects are initialized and data is passed to
the system under test. In the Act section, the system under test is
invoked with the arranged data. In the Assert section, the actions
and results of the system under test is compared with the expected
actions and results.

One key difference to the classical in unit tests is that the Inject
arrange section does not arrange any objects before the system
under test is invoked. The Inject arrange section only arranges
the code which shall be executed when the system under test is
running.

It is important that the Assert section is not injected into the
system under test. Although possible, this would couple the unit
tests and the system under test more strongly and increase the
amount of injected code.

If the same part of the code shall be tested multiple times, then
the recurring parts of the Inject Arrange stage may be factored out
to the Inject Setup stage. Finally, if the unit test framework does not
automatically clear injected code after the tests are finished, then
all code injections need to be manually cleared in the Tear down
stage.

2.5 Consequences
The refactoring of legacy code becomes easier and less likely to
break existing code.

2.5.1 Benefits.

+ For most programming languages, injection testing does not pose
any requirements on the coding style.
Thus, the pattern can be applicable in situations where other
approaches fail, most prominently those described in Section 1.1.
This is especially important when refactoring legacy code.

+ Places where interception points can be placed using the injection
seam depend on the programming language, but are in general
quite arbitrary; usually at each code line. This enables the testing
of parts of the code.

+ Using the injection seam can be faster than the pre-processor or
link seam. No additional compilation/linking cycles are needed,
but also code sections not relevant to the test can simply be
skipped.

2.5.2 Drawbacks.

− Injection tests are more strongly coupled to the system under
test than classical unit tests. In particular, variable names, line
numbers, and/or labels may have to be spelled out explicitly in
the injection test. Data that previously were private to functions
(like local variables) become public to the injection test; In other
terminology, the injection test becomes a friend of the system
under test.

− Due to the strong coupling of the injection tests with the system
under test, the injection tests themselves should be refactored
after the SUT is refactored successfully.

− Without sufficient support from the programming language or
the development environment, injection testing may not be pos-
sible or only partly possible, e. g. whenever a correspondence the
set of key functions cannot be implemented fully.

Inject Setup

• Inject jump to the section of interest via gotoat
• Inject retrieval of results after the section of
interest via captureat

• Inject return after the section of interest
via returnat

Inject Arrange

• Inject code to set the workspace via assignat

Act

• Start the system under test

Assert

• Retrieve the results via captureat
• Check the results (using an assertion framework)

Tear down

• Remove all code injections via clearat

Figure 2: Injection testing pattern: After an optional setup, in
the Inject Arrange stage, the code to set the desiredworkspace
is injected. After the execution of the system under test in
the Act stage, the results are retrieved and checked in the
Assert stage. The final tear down concludes the pattern.
The used functions are described in Section 2.6.

− Code injection may degrade the system under test‘s performance,
as (𝑎) the code must be supervised by some means to allow code
injection, and (𝑏) the code can not be compiled with all possible
optimizations.4

− Minimal manual editing of the code is still required, usually solely
by adding comments, and thus, the risk of unwittingly altering
its behaviour is not fully mitigated.

2.6 Implementation example
We will make use of the following set of key functions:

• gotoat: Jumps to an arbitrary line of code
• assignat: Assigns values to variables
• captureat: Stores the current state5
• returnat: Returns from the function
• clearat: Removes all injected code

The correspondence between the key functions and the stages of
the injection testing pattern are depicted in Figure 2.

4Even in scripting languages, code is often just-in-time compiled to make it run faster.
5With state we mean any observable and for the SUT meaningful entity. For the rest
of the paper we will only be concerned with variables and their values, although this
pattern does not carry such a restriction.
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The only necessary modification to the system under test may
be the addition of comments to the code, indicating where to in-
strument the code for the injection tests. Comments are unlikely
to break or alter the existing code6, particularly when some spe-
cial style (e. g. <!TEST1!>) is used, such that changes can be easily
tracked and the comment‘s special role is clearly indicated. If com-
ments were accidentally removed, the accompanying test suite
would fail, thus indicating the problem.

Similar approaches are in use for tracing function calls in Mat-
lab [15], and for implementing Mutation testing in Java [16].

Only some programming languages, e. g. Java, support code
injection directly. When there is no language support, it is often
possible to use the debugger for implementing code injection. The
relevant features of the debugger are:

• Running a program step by step
• (Conditionally) stopping the program at a certain point
• Inspecting the current state
• Jumping to a certain point

Often, these features can be accessed from within the program-
ming language, e. g. in interpreted languages like Matlab, Python,
or R. Also often the debugger can be controlled using third party
libraries, e. g. libgdb for gdb (discontinued 1993) [17], lldb for
the LLVM toolchain [18], Windows Debugger (WinDbg) forWin-
dows [19].

Failing that, one can usually still write macros in some scripting
language for the debugger, e. g. GDB\MI for gdb [20].

3 EXAMPLES
In this section we give two examples on using our injection testing
pattern for deriving a unit test and an integration test. Apart from
the functions proposed in Section 2.6, we use the following tools:

• A method to easily save snapshots of some state
• A unit test framework for automated unit tests
• An assertion framework to easily write assertions

3.1 Example 1: Unit test
We demonstrate the injection testing pattern on the dummy legacy
function foo given in Listing 1,7 using Matlab style code. The task
is to refactor parts of the body of foo out into a sub function while
touching the code as little as possible. We only present the relevant
lines of code.

Write a succeeding unit test. The function foo is not suited for
classical unit tests, since the lines of code to be tested are not
accessible via standard means.

function foo( a1, a2 )

% lots of code

sum = 0

for i = 1:a1 % loop over i = 1 to a1 (both included)

sum = sum + i; end

% lots of code

Listing 1: Function foo

6An example where comments could break code are old BASIC dialects which used
hard coded line numbers to specify the control flow.
7The “:”-operator generates a regularly spaced vector of numbers, and is usually used
to define the bounds of a for loop.

In the first step we add the labels <FOO:1> and <FOO:2> which
indicate where to instrument the code with injection tests, see
Listing 2.

function foo( a1, a2 )

% lots of code

% <FOO:1> % comment for testing

sum = 0

for i = 1:a1

sum = sum + i; end

% <FOO:2> % comment for testing

% lots of code

Listing 2: Function foo augmented

In this form, the code is ready for injection testing and we can
write a unit test suite. An example unit test suite is given in Listing 3.

%% inject setup
gotoat( 'foo', 'goto','<FOO:1>' )

captureat( 'foo', 'at','<FOO:2>' )

returnat( 'foo', 'at','<FOO:2>' )

%% test 15
% inject arrange

assignat( 'foo', 'at','<FOO:1>', 'a1' ,15 )

% act

foo()

% assert

X = captureat () % obtain values

EXPECT_EQ( X.sum , 120 ) % compare result

%% test 0
% inject arrange

assignat( 'foo', 'at','<FOO:1>', 'a1',0 )

% act

foo()

% assert

X = captureat ()

EXPECT_EQ( X.FOO2 , 0 )

%% tear down
clearat( 'foo' )

Listing 3: Unit test suite for foo

What happens in Listing 3. In the % setup part, we collect
the code which is shared among both unit tests, %% test 1 and
%% test 2. The function gotoat injects code such that, after enter-
ing foo the control flow immediately continues at the line with the
comment <FOO:1>. The function captureat injects code such that
the value of the variable sum at the line with comment <FOO:2> is
stored for later retrieval. The function returnat injects code so
that the function foo returns to the caller site whenever the control
flow reaches line <FOO:2>.

In the %% test 1 part we arrange the data to be injected into
the function foo; at the line with comment <FOO:1> the variable a1
will be assigned the value 15. Afterwards we execute the system
under test by calling it and retrieve the stored data by captureat.
In the %% assert section we check whether the retrieved value
of sum equals our expected value 120. The second test %% test 2
follows the same pattern.

In the %% tear down part, after the injection tests have finished,
we clean up using clearat which removes all injected code from
the function foo.
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Refactor. Having our unit tests in place we can safely refactor
the function foo, as given in Listing 4.

function foo( a1, a2 )

% lots of code

% <FOO:1>

sum = sum0( a1 )

% <FOO:1>

% lots of code

function x = sum0( x )

x = x * ( x + 1 ) / 2

Listing 4: Refactored foo

When we are sure that the refactoring did not change the be-
haviour, one should refactor the code and the unit tests once more,
see Listings 5 and 6.

function foo( a1, a2 )

% lots of code

sum = sum0( a1 )

% lots of code

function x = sum0( x )

x = x * ( x + 1 ) / 2

Listing 5: Twice refactored foo

%% test foo
EXPECT_EQ( sum0 (15), 120 )

EXPECT_EQ( sum0(0), 0 )

Listing 6: Refactored unit tests for foo

3.2 Example 2: Integration test
Another example for using the injection test pattern is the gradual
refactoring of the function bar, whose functionality is not apparent
to the programmer, see Listing 7.

Write a succeeding unit test.

function bar( a )

% 1000 lines of code

% <BAR:0>

% another 1000 lines of code

% <BAR:1>

Listing 7: Function bar

Using injection testing, we store the full state of the program at
various locations when run in its initial form, i.e. before refactoring.
After refactoring we compare the saved state with the new state.
If they coincide, we can assume that the behaviour of the system
under test did not change. An exemplary unit test suite is given in
Listing 8.

What happens in Listing 8. The only substantial difference to our
unit test suite for foo is the use of the helper function CACHE. This
is just a thin convenience wrapper for storing data to disk, used as
follows: When a file with name equal to its first argument does not
exist, it stores the value of the second argument to disk. Otherwise,
it discards the second argument and loads the stored data from disk.

%% inject setup
captureat( 'bar', 'at','<BAR:0>' )

captureat( 'bar', 'at','<BAR:1>' )

%% test 5
% arrange

a = 5

% act

bar( a )

X = captureat () % obtain values

% assert

EXPECT_EQ( CACHE('BAR0_5 ', X.BAR0), X.BAR0 )

EXPECT_EQ( CACHE('BAR1_5 ', X.BAR1), X.BAR1 )

%% test 7
a = 7

% test continuos as above

%% tear down
clearat( 'bar' )

Listing 8: Integration tests for bar

This time we inject code such that the whole workspace of the
function bar is capturedwhenever the control flow reaches the lines
with comments <BAR:0> and <BAR:1>. The call X = captureat()
in the % act section then retrieves the stored data and stores it in X.
The assert section now compares the two stored states with the
snapshot taken from before refactoring.

4 IMPLEMENTATION IN MATLAB
We implemented the set of key functions proposed in Section 2.6
using Matlab‘s debugger and conditional breakpoints. Matlab‘s
conditional breakpoints evaluate a string at run-time. If the result is
truthy8, the code run is stopped at that location; but when it is falsy,
the code run continues normally. Using conditional breakpoints for
code injection in Matlab has some restrictions:
(1) Conditional breakpoints only accept valid Matlab commands,

but not anonymous functions.
(2) The injected code must return a falsy value in order to avoid

the debugger stopping its execution.
(3) If the injected code throws an error, it is caught automatically

by Matlab and the program run stops, i.e. the debugger starts.
(4) Injected code is always executed before the code at the injected

line. Code cannot be injected between statements.
To execute anonymous functions, we store them in a persistent

variable in some function, and generate a stringwhich then executes
that anonymous function. To ensure that the return value of the
injected code is false, it gets wrapped in a function returning
false and evaluated by evalin( 'caller', __ )9. Errors thrown
by the injected code are caught inside the function which evaluates
the string or anonymous function.

4.1 Example implementation of evalat
To illustrate the execution of anonymous functions in Matlab, and
thus execution of arbitrary code, a minimum implementation of a

8A truthy value is a value which implicitly evaluates to true, for example in an if
condition; e. g. true, 1 or an array with only non-zero values. Contrary, a falsy value
implicitly evaluates to false; e. g. false, 0, or an array with at least one zero.
9The function evalin( 'caller', cmd ) executes a command cmd in the callers
workspace, and in particular has access to the callers workspace. Note that evalin
cannot be used recursively.
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function evalat is given in Listing 9. The key functions captureat,
assignat both can be derived from this one.

Note, to avoid parsing the inputs, the interface of evalat is
different from the interface of the ...at functions in the listings
above.

function ret = evalat( fun , lne , h );

persistent cache;

if( nargin ==0 );

ret = cache;

return; end;

cache = h;

h = ['returnfalse( 'assign(''handle '',evalat ()) ) ||'...

'returnfalse( handle () ); '];

dbstop( 'in',fun , 'at',num2str(lne), 'if',h );

function ret = returnfalse( varargin );

ret = false;

function ret = assign( name , value );

try; ret = evalin( 'caller ', [name ';'] );

catch; ret = []; end;

assignin( 'caller ', name , value );

Listing 9: evalat

What happens in Listing 9. The function evalat accepts three
arguments, fun is the function where code shall be injected, lne is
the line number where code shall be injected, h is an anonymous
function to be executed at the specified position.

Upon calling with three arguments10, the anonymous function h
is stored in the persistent11 variable cache. A persistent variable
retains its values between function calls. Then, the function dbstop
adds in the function fun at the specified position lne a conditional
breakpoint, which will execute the code listed in Listing 10; We put
those lines of code in its own listing for better readability.

returnfalse( assign('handle ',evalat ()) ) || ...

returnfalse( handle () );

Listing 10: Code of conditional breakpoint in evalat

Now, when the function fun is called and the program flow
reaches line lne the function evalat is called without arguments.
Thus, evalat returns the value of the persistent variable cache, this
is exactly the anonymous function hwewant to execute. The anony-
mous function h is passed to the function assign, which creates a
variable with name ’handle’ in the workspace of the function fun.
All of this code is wrapped inside a call to returnfalse12 , which
ensures that always false is returned.

A conditional breakpoint only stops when the injected code
returns true. Since the first part of the injected code returns false
the second part is evaluated. Now the just assigned variable handle,
which is our anonymous function h, is executed. The result of the
anonymous function h is passed again to returnfalsewhich again
ensures that false is returned. Thus, the debugger does not stop
the program.
10The function nargin returns the number of passed arguments. Note that, calling a
function without parentheses is equivalent to calling it without arguments, i.e. nargin
is the same as nargin().
11Persistent variables retain their value between calls to the function. They get auto-
matically initialized with [].
12If the function’s arguments are called varargin, then the variable varargin contains
all passed arguments wrapped inside a cell array.

A usage example of evalat is given in Listing 11.13,14,15

>> evalat( 'surf', 1, @() disp('Hello World!') );

>> surf( membrane );

Hello World! % and the Matlab membrane is plotted

Listing 11: Usage example of evalat

4.2 Example implementation of returnat
A more involved, but shorter example shows how to programmati-
cally return early from a function. The idea is to provoke an error at
a user defined position in a function and catch the exception. As al-
ready noted, simply throwing an error in some injected code would
not work, since, whenever injected code throws, the debugger stops
the program. Instead, we have to make sure that an error is thrown
after the injected code was executed. This we achieve by some
tough means; we clear the function‘s workspace, see Listing 12.

function ret = returnat( fun , lne );

if( nargin ==0 );

evalin( 'caller ', 'clear ' );

ret = false;

else;

dbstop( 'in',fun , 'at',num2str(lne), ...

'if','returnat ' );

try; eval( fun );

catch me; disp( me ); end; end;

Listing 12: returnat

What happens in Listing 12. The function returnat accepts two
arguments, fun is the function which shall be executed, lne is the
line number at which we want to return. When called with two ar-
guments, dbstop adds a conditional breakpoint in the function fun
at the specified position lne, which executes a call to returnat
without arguments. Afterwards the function fun is called. When
program flow reaches the specified location lne, returnat is called
without arguments. Thus, the workspace of fun is cleared by exe-
cuting evalin( ’caller’, ’clear’ ). Finally false is returned,
so that the debugger does not stop the program. The next time a
variable is accessed in the function fun, an error is thrown, there-
fore the fun returns. This error is caught in the catch block in
the function returnat. In our example implementation we display
the caught error, but any other code is equally possible. A usage
example is given in Listing 13.

>> returnat( 'spy', 42 );

MException with properties:

identifier: 'MATLAB:refClearedVar '

message: 'Reference to a cleared variable.'

file: 'spy.m::42'

Listing 13: Usage example of returnat

13In the listing, the lines starting with “»” are supposed to be entered in the Matlab
command window. The other lines present the expected result.
14Anonymous function are declared by an “@” character, followed by the list of argu-
ments in parentheses.
15This example is tested with Matlab 2020a; with other versions it may not work.
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4.3 TTEST
Functionality for implementing the code injection pattern, specifi-
cally the key functions assignat, captureat, evalat, returnat,
are contained in the unit test framework TTEST for Matlab and
Octave. TTEST has been written specifically with testing code in a
scientific context in mind. It supports the testing of scripts, local
and sub functions, has utilities for caching results for integration
tests, and adds support for injection testing and partly for design
by contract [21].

TTEST is published under a permissive open source license and
available at gitlab.com/tommsch/TTEST . The full documentation of
TTEST, together with a comparison of Matlab unit test frameworks,
can be found in [22].

The following projects use TTEST (list non exhaustive): • Audi-
tory Modelling Toolbox (Ver. 1.1) [23] • ttoolboxes [24] • Large Time
Frequency Analysis Toolbox (Ver. > 2.4) [25]

5 CONCLUSION
We presented a pattern for the injection-based refactoring as a
means for handling otherwise not testable code, along with a set
of functions suitable for its implementation. We gave examples on
its usage and practical advice for their implementation in scripting
languages via making use of the debugger‘s functionalities. We
provide a free implementation of the pattern‘s key functionality in
our TTEST unit testing framework.

Further work comprises enhancements of the usability and cus-
tomizability of the pattern by improving on the underlying func-
tionality in the toolbox, e. g. by implementing a gotoat function,
allowing for the direct execution of arbitrary sections in the code.
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